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Abstract

In this paper we address issues of reliability of RAID sys-
tems. We focus on “big data” systems with a large number
of drives and advanced error correction schemes beyond
RAID 6. Our RAID paradigm is based on Reed-Solomon
codes, and thus we assume that the RAID consists of N
data drives and M check drives. The RAID fails only if
the combined number of failed drives and sector errors
exceeds M, a property of Reed-Solomon codes.

We review a number of models considered in the litera-
ture and build upon them to construct models usable for a
large number of data and check drives. We attempt to ac-
count for a significant number of factors that affect RAID
reliability, such as drive replacement or lack thereof, mis-
takes during service such as replacing the wrong drive, de-
layed repair, and the finite duration of RAID reconstruc-
tion. We evaluate the impact of sector failures that do not
result in drive replacement.

The reader who needs to consider large M and N will
find applicable mathematical techniques concisely sum-
marized here, and should be able to apply them to simi-
lar problems. Most methods are based on the theory of
continuous time Markov chains, but we move beyond this
framework when we consider the fixed time to rebuild
broken hard drives, which we model using systems of de-
lay and partial differential equations.

One universal statement is applicable across various
models: increasing the number of check drives in all cases
increases the reliability of the system, and is vastly su-
perior to other approaches of ensuring reliability such as
mirroring.

1 Introduction

RAID technology (see [7]) has a single primary focus: to
apply mathematical techniques to organize data on multi-
ple data storage devices such that in the event of one or
more device failures, the original data stored is still avail-
able. In recent years, this feature has become much more
important. The reason for this is the rapid erosion of the
relative reliability of data storage devices.

For example, according to the manufacturer, a typical

high capacity disk drive will experience an unrecoverable
read error in every 1 in 10'* bits, as discussed in [4]. The
same drive can transfer data at a rate of 6 x 108 bits. At
this transfer rate, this data storage device will lose data
every 1.67 x 10° seconds, or roughly every 2 days.

To build high capacity storage systems, a hundred or
more disk drives may be deployed, combined in a single
system. Using the manufacturer’s projections, this system
would lose data every 30 minutes. Hence, the impera-
tive for reliable mathematical techniques to recover from
this data loss are becoming increasingly urgent for sys-
tems that store “big data.”

There exists another important class of failure that is
critical to overcome in order to ensure that the original
data is still available: silent data corruption. This occurs
when a storage device delivers incorrect data, and reports
it as correct. These events are well known and have been
repeatedly measured and documented in the industry. Not
a single storage device manufacturer supplies a specifi-
cation as to how often these events will occur. A well
designed RAID system, to be truly resilient in the face of
all these failure scenarios, must be able to detect and cor-
rect as well as recover from a wide class of reported and
unreported error scenarios.

In this paper, we attempt to quantify the increased re-
liability that is achieved by constructing RAID systems
with more robust error correcting codes (ECC). Standard
RAID ECCs are often termed RAID 6, and are resilient in
the face of two drives failing. However, for large systems,
these codes are simply not robust enough, especially in
the light of “expected” failures that occur every few min-
utes. With only two drive protection, service events must
be scheduled quickly, or the system runs a serious risk of
permanent data loss. Employing additional check drives
allows for fewer service events that can be scheduled with
more flexibility.

Well known Reed Solomon ECC codes can extend the
reliability of RAID systems to tolerate many more re-
ported failures and succeed in delivering correct data even
in the face of silent data corruption. Since there is no ac-
curate way to project the underlying reliability or correct-
ness of the individual data storage devices, we propose
that employing a more resilient mathematical technique is
imperative to the design of future RAID systems intended



to store “big data.”

1.1 Measures of RAID Reliability

The most common metric used to measure the reliabil-
ity of a RAID system is the Mean Time to Data Loss
(MTTDL), which measures the average time it takes for a
given RAID system to experience a failure in which data
is irrecoverably lost. However, MTTDL can be difficult to
interpret and somewhat misleading, as discussed in [10],
[6].

Here we will focus on the Probability of Data Loss
within a specified deployment time ¢ (PDL,). This mea-
sure is more useful to a user of a RAID system than
MTTDL in that it allows the user to think in terms of the
acceptable risk of losing data during the expected lifetime
of the data storage system, and is a more nuanced measure
than MTTDL. However, to provide easy comparison with
results from other authors, we will discuss the MTTDL
for our models, as well as the PDL;. Some authors have
chosen to focus on how much data a RAID system expects
to lose in a given deployment time. We argue that any data
loss is unacceptable and thus focus solely on whether or
not data is lost, not how much.

2 Model 1: No Repair

Let us start by exploring a particularly simple model of
the reliability of a RAID system. Although this model is
not nuanced, it will allow us to develop the relevant math-
ematical techniques in a case where analytical solutions
are both tenable and concise. In future sections, we will
build off this model to create more complex and realistic
models of RAID reliability. Such models are examples of
birth and death chains, which have been well studied in
the mathematical literature; see [3]] and [14], for example.

Consider a RAID system consisting of N data drives
plus M check drives. There are T = N + M drives in the
system, with a storage rate N/7T. RAID storage systems
are such that the system can tolerate and recover from up
to M drive failures; if there are M + 1 or more failures,
data is irretrievably lost. See [8] and [9]] for the mathe-
matics of such systems.

In this first “no repair” model, we assume that drives
are never repaired or replaced; if a drive fails, the system
continues to operate without it. So long as no more than
M drives fail, the system is functional and all data can be
read and new data can be written. Maintenance can be
expensive, so engineering a system that will never need
to be touched by human hands within some fixed deploy-
ment time might be a good design solution. Thus although
this model is simple, it is also realistic.

We model this system as a discrete state, continuous
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Figure 1: Markov chain for the no repair model of RAID
reliability.

time Markov process with M + 2 states, as shown in Fig-
ure[I] State i indicates that i drives have failed. The sys-
tem is initialized in state O with all drives working. When
a drive fails the system moves from state i to state i + 1.
If drives fail independently at a constant rate of failure A
per drive, then the system moves from state i to i 4+ 1 with
an effective failure rate 2; = (T —i)A. If the system enters
state M + 1, the failure state, then the RAID system has
failed, and data has been lost.

The probability distribution on the set of states is a
probability vector

a(t) = (qo(t),q1(7), .., qm1 (0)"

where ¢ (1) is the probability that the system is in state j at
time ¢. Thus, ij‘./lz’gl q;(t) = 1. The evolution of the prob-
ability distribution q(z) is governed by the system of or-
dinary differential equations (the Kolmogorov-Chapman
equations):
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where A(t) is the transition matrix. For the no repair
model,

% 0 ... 0 0 07
o M ... 0 0 0
0 A ... 0 0 0

At) = : : )

0 0 0 0 0
0 0 “Ayr 00
0 0 At Ay O

L 0o o 0 v O |

and A; = —(T —i)A. Notice that the eigenvalues of A are
Oand —A; for0<i< M.

If X(¢) is the state of the system at time ¢ (so X (¢) €
{0,1,2,...,M + 1}) then the transition probability satis-
fies the equation:

P(X(t+h) = j|X(t) = k) = aj(t) h+o(h)

If the Markov process is stationary, the matrix A(¢) is con-
stant; we will restrict our models to this case. From the
probability nature of the matrix it follows that for allz > 0
Yjaji(t) = 0. The differential equation (I} has solution

a(t) =exp(14)q(0) | 3)




where the matrix exp(rA) is the matrix exponential, i.e.
the sum of the series Z;"zo(tk/k!)Ak (see [12], p. 206).

2.1 Calculation of PDL;

From the solution provided in (3)), it is easy to identify the
PDL,; for the model, it is simply the probability of being
in the failure state at time 7: PDL, = gp+1(¢). For most
models presented here, finding an analytical form for this
quantity will be intractable, or will result in an expression
that is too long to include. However, the no repair model
is simple enough that we can tackle the PDL, calculation
directly.

The calculations simplify significantly if we consider a
slightly modified model. The model consists of T drives
without partitioning the system into the data and check
drives. We run this system until the last drive fails. How-
ever, formally this system is identical to the original sys-
tem with exactly M’ =T — 1 check drives and N’ = 1 data
drives. We consider the system failed when M + 1 or more
drives have failed. Thus, in this new framing, the quantity
of interest is:

T M
PDL, = Y qi(t)=1-Y qi(t)
i=0

i=M+1

and we find it by explicitly calculating q = exp(zA) q(0).
The diagonalization of A, S~'AS = D, where D is a di-
agonal matrix and S is invertible, can be found explicitly.
Clearly, D;; = —A; = —(T —i)A and we found the follow-
ing expression for the entries of S:

Sk = (1)k_l<Z_ll)-

Thus § is a lower-triangular matrix whose entries are bi-
nomial coefficients, up to the sign. The columns of S are
the right eigenvectors of A. The left eigenvectors of A are
the row vectors which are the rows of S~!. We found the
following expression for the entries of S~

T-1
Sy =
K <k - z)
This is again a lower-triangular matrix of binomial coeffi-
cients.

When the matrix A is diagonalizable, the explicit for-
mula for exp(rA) is:

Z eivw!

exp(tA) 4)

where v; is the i-th right eigenvector (i-th column of S)
and WlT is the i-th left eigenvector (i-th row of S~1). Since

a(0) = e = (1,0,0,...,0),
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We note the identity
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This is a binomial distribution B(T, p), where p=1—e¢
is the probability of success, as expected, because we
may consider the survival of each disk as an independent
Bernoulli trial. Hence,
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This formula is adequate for calculations and is numer-
ically stable. It may also be approximated by the left
tail of the normal distribution N(T'(1 — p),+/T p(1—p)),
based on the Central Limit Theorem (CLT). However, we
can do better. Let .7 be the time at which data is lost.
Then F(t) = PDL; = P(7 <1t) is the cumulative dis-
tribution function of .7. We find the p.d.f. of 7 us-
ing F'(t) = — Y2 (q,(t). Using the system of differen-
tial equations satisfied by gx(r) (q((r) = —Aoqo(t) and
4 (t) = =X qi(t) + A1 qx—1(¢) for k > 1) we find:

M
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We use the substitution u = 1 — e, du = A(1—u)dt,
and obtain

0, and thus

_ u(t)
PDL, = T(TM1>/ 1 —u)T MM (1 —u)" du
0
T! utr) T-M-1 M
= M!(T—M—l)!/o (1—u) u” du.



This means that the random variable % given by the trans-
formation % = 1 —exp(—A.7) has beta distribution

. _ 1 o—1 B—1
f(u’a7ﬁ)_B(a,ﬁ)u (1 I/t)

with parameters &« = M + 1 and § = T — M. We note that
the transformation is the c.d.f. of an exponential model.
If .7 were exponentially distributed with this c.d.f. the
resulting %7 would have uniform distribution on the inter-
val [0,1]. This highlights the stark difference between the
uniform time to failure for a single drive, and the the time
to data loss for a RAID system, which has small spread
around its MTTDL.

(6)

2.2 Calculation of MTTDL

In this paper we will develop several methods for calculat-
ing MTTDL,; the following method is based on the results
of Section The inverse formula .7 = —% log(1—%)
allows one to compute MTTDL. The variable ¥ =1 —%
is beta distributed, with the parameters o and  swapped.
We find from standard sources on beta distribution that

Elog(7) = y(a) —w(a+B) = w(T —M) —y(T +1)
where y is the digamma function. Hence,

(T+1)—w(T-M)
7l :

The digamma function is the only solution of the func-
tional equation y(x + 1) = y(x) + 1/x monotone on
(0,00) and satisfying y(1) = —v, where 7 is the Euler-
Mascheroni constant. Therefore, we can show easily that

MTTDL:E?:—%]Elog”//: v

MTTDL = + i !
A Timk

Yet another method uses the widely known fact that
MTTDL = [;°R(t)dt, where R(t) = 1 — F(t) is the relia-
bility function, and it uses formula (). This calculation is
left to the reader. A more general, related approach, based
on the Laplace transform is presented in the next section.

2.3 An Analytical Approach to MTTDL

The moments of q(t) are the quantities my(q) =
Jo t*q(t)dt. These are vector quantities, but typically we
will only be interested in the last component, my(ga+1)s
as it is related to the distribution of the time of failure. In
particular, MTTDL=E.7 = m;(qp+1). Our exact ana-
Iytical technique to calculate the moments is based on the
Laplace transform: q(z) = [ e *'q(¢)dt. We recall that
the Laplace transform is the moment generating function:

ka

Q@)= Y (-1 mia) )
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We can obtain a second expression for q(z) by consid-
ering the resolvent of the matrix A: R(z;A) = (z1 —A)~L.
The quantity z is complex, and R(z;A) is a complex
matrix-valued function meromorphic in the entire com-
plex plane. Its poles are exactly the eigenvalues of A. A
well-known identity in operator theory relates the Laplace
transform to the resolvent and the initial condition:

~

q(z) = R(z;A) q(0).

The resolvent is a rational function, and in applications to
continuous-time Markov chains, 0 is an eigenvalue of A.
The resolvent therefore has a pole at z = 0 of some order
v. For this reason it is convenient to consider the Laurent
series of R(z;A) at z=0:

oo

R(z;A) = Z FRW,

k=—v

The matrices RX) are constant. When z = 0 is a sim-
ple eigenvalue (common case) then v = 1 and R(-1 (the
residue) admits an expression in terms of the left and
right eigenvectors of A with eigenvalue 0. Let u’ A =0
and Av = 0, scaled so that u” v = 1. Then R = vu”
is a spectral projection on the eigenspace of 0. When
u’ q(0) = 0, as is the case in the models presented here,
we have

i)=Y #RW q(0).
k=0

Comparing this equation with (7)), we obtain an expres-
sion for the moments of q in terms of the Laurent series
of the resolvent: my(q) = (—1)k!R® q(0). This is our
main device to calculate means and variances of the time
of failure. These formulas are convenient to use with com-
puter algebra systems (CAS).

The relationship between the moments of the time of
failure .7 and the resolvent can be explained easily. If
r is the initial state (¢;(0) = ;,), and the failure state
is s, then the probability F () =PDL, of transitioning to
the failure state before time 7 is the entry (¢/4);, of the
fundamental matrix. Therefore, the entry R;,(z;A) =
(R(z;A))s,r of the resolvent is the Laplace transform of the
PDL,. The function F(¢) is the c.d.f. of the time to fail-
ure. The k-th moment of this distribution is [;"t* dF (¢).
Stieltjes integration by parts formula yields: my () =
S A () = — [ ikd(1 - F() = (1 - F(0)[ +
Jo (A =F(#))kt* =1 dt = kmy_1 (1 — g5,(t)). The Laplace
transform of 1 — g, (7) is 1/z2— g, ,(2) = 1/2— Ry r(z:A).
Therefore, there is an explicit expression of the moments
of the time to failure in terms of the Laurent series of the
resolvent:

m(T) = ®)

(—1f K REY,




2.4 Summary of Results

In Section 2.1l we showed that if .7 is the random variable
representing the time to failure, then the random variable

U =1—exp(—A7)

is beta distributed with parameters « =M + 1 and § = N.
This provides a complete probabilistic description of 7.
We derived the explicit formula

S\ Mo (yM- .
PDL; =1— T(T 1) Z & (M) e t(T=i)A
M

= T-i i

In Section we derived an explicit formula for
MTTDL:

MTTDL—% L] Y :
A A Tuk

We note that for large 7 we have the following approxi-
mation:
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This formula demonstrates that we may increase MTTDL
to an arbitrarily large value by increasing the ratio of
check drives to data drives to infinity. The total number
of drives, T, grows exponentially with the target MTTDL.
However, MTTDL grows linearly with M if M < T.

Thus, when there are relatively few check drives as
compared to the number of data drives, the economical
way to double MTTDL is clear: double the number of
check drives.
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Figure 2: PDLs for the no-repair model.

We can also numerically compute PDL, for this model
using li We will use the value A = m for numerical
computation, and assume that the expected deployment
time for the system is five years. We believe this value for
A is realistic, but perhaps conservative, based on the dis-
cussion of real world drive failure rates in [[L1]. We do not
expect to obtain numerical results that are particularly ex-
act, and thus will not dwell upon the value of such param-
eters used here. Instead, we hope to better understand the
effect of using additional check drives on the reliability of
the system by examining numerical results qualitatively.

Figure[2]shows PDLs under a no repair model as a func-
tion of N for five values of M. Notice that to maintain a
particular level of reliability (PDLs value), more check
drives are required as the number of data drives increase.

3 Model 2: Individual Drive Repair

Let us consider a model of RAID reliability as in Sec-
tion 2] but now we allow failed hard drives to be repaired
one at a time. Other authors have also considered this
model; see [10]], [6], [2], for example, or [1] for a similar
model.
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Figure 3: . Markov chain for the individual repair model.
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The inclusion of repair yields a new Markov chain,
shown in Figure 3] The modeling of drive failures is the
same as in Section [2l When a drive is repaired the sys-
tem moves from state i to state i — 1. If drives are repaired
at a constant rate U, independent of the number of failed
drives, the system moves from state i to i — 1 with effective
repair rate [ = [L.

3.1 Simple Case: RAID 4/5

A simple case of this model is RAID4/5 which, in
essence, have N data drives and M = 1 check drive, and
the failure of any two drives is fatal. The states in this
model are 0, 1 and 2, and the transition matrix is:

—(N+1)A u 0

(N+DA  —AN—p 0
0 AN 0

A= 9)

The entry R o(z) of the resolvent of A is of interest:

(N2 +N) A2
(N24N)A2z4+(2N+1) A +u) 22+ 23

Ryo(2) =



By the Laurent series of R o(z) and (8)) we find:

N+ A+p

m(7) = TNNEDAz
6N2+6N+2) A2+ (8N +4) uA+2u?
m(7) = ) A2+ ( ) pA+2pu7

(N*+2N3 +N?) 24

This result for m (.7°) = MTTDL is consistent with Plank
in [[10]. The variance may be computed using the formula
var(.7) = my(.7) —m(.7)?* and is useful when applying
techniques such as the Tchebycheff inequality to estimate
the confidence interval for 7. After some simplifications

(2N?+2N+1) A2+ (AN +2) uA +p?

var(7) = (N* +2N3 £ N2) A4

Our technique generalizes easily to more check drives
(e.g. 2, 3 and 4), but the expressions are too large to in-
clude in this paper. It is worth noting that moment calcu-
lations do not require eigenvalues of A. In contrast, cal-
culating PDL,, or equivalently, exp(tA) is typically per-
formed via diagonalization of A, and is easily done using
numerical techniques. Limited theoretical results can be
obtained, but they are beyond the scope of this paper.

3.2 General Case

For arbitrary M, the transition matrix is given by:

[ 2o m 0 0 07
Ao —(M+) J1%) 0 0
0 A —(+uw) 0 0
0 0 A 0 0

A= : o

0 0 0 0 0
0 0 0 wy O
0 0 0 —(A+um) O

L 0 0 0 ... Ay 0 ]

withA; = (T —j)A, and u; = p.

As in Section we can numericaly compute PDLs
for this model. We use a repair rate of i = m for our
calculations.

Figure [] shows PDLs as a function of N for five val-
ues of M. The y-axis (PDLs) is on a logarithmic scale in
this graph; each curve on the graph represents a particu-
lar value of M. First, notice that these curves are spaced
evenly apart for PDLs on a logarithmic scale. This in-
dicates that a RAID system under the individual repair
model with M + 1 check drives is exponentially better than
a RAID system with M check drives and all other param-
eters the same. That is, PDLs ~ CJ}’I where ¢ is a con-
stant less than one. Additionally, for a fixed M, the effect
of increasing N is relatively small. These observations
have direct implications for the design of RAID systems.
Adding an additional check drive to a RAID will dramat-
ically increase the reliability of that system, whereas an
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Figure 4: PDL; for the individual repair model.

additional data drive will only decrease the reliability of
the system slightly. Therefore, the largest RAID systems
are able to achieve the best reliability at the lowest cost
per byte stored.

4 Model 3: Simultaneous Repair

Figure 5:
model.

Markov chain for the simultaneous repair

As arevision to the individual repair model, it is unreal-
istic that hard drives are repaired one by one at some fixed
rate. Instead it is more likely that if one or more drives
have failed, a repairman would be notified, and when he
arrived to fix the drives, he would fix all failed drives at
once. This new model can be represented with the Markov
chain shown in Figure E] For this model,

[ —2o M J15] Uy 07
Ao —(htw) 0 0 0
0 M —(A2+ o) 0 0
0 0 L 0 0
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with A, = (T —m)A, and y,,, = 1. Notice for M = 1 this
is the same model as our first simple model, and has the
same MTTDL.

4.1 Results

The effects on predicted reliability of the RAID as a result
of this change to the model are negligible. For example,
with M =5, the PDL5 for the simultaneous repair model is
0 - 3% lower than for the individual repair model, and the
effect grows linearly with N. The same relationship holds
for other values of M with a smaller constant of propor-
tionality for smaller M. For large M this effect might be
significant but the reliability model is not sensitive to this
modification.

S Model 4: Imperfect Repair

Say you are a small company with a RAID system, and
one drive or system fails. You call in the appropriate em-
ployee, but this person may not be an expert in RAID. He
accidentally swaps out the wrong hard drive. Now you
effectively have a RAID system with two failed drives in-
stead of one.

Here we will attempt to capture the effects of human
error on the reliability of RAID systems. We will build on
the model discussed in Section[d] using the same Markov
chain (Figure [5) and transition matrix A, but will use dif-
ferent effective failure and repair rates. We suggest that
when hard drives fail there is a probability p that in ser-
vicing those drives some other hard drive will be dam-
aged and the already failed drives will not be repaired;
there is a probability 1 — p that the failed drives will suc-
cessfully be repaired. Therefore, the effective failure and
repair rates are Ao =T A, A; = (T — j)A +pu p for j >0,
and 1 = (1 - p).

5.1 Results

Figure[6]shows the effects on PDLs of considering imper-
fect repair. Notice that even for p small, imperfect repair
decreases the reliability of the system by several orders
of magnitude. Doubling p decreases the reliability by at
least one further order of magnitude. For larger M the ef-
fect is more pronounced with a decrease in reliability of
as much as 10 orders of magnitude. For someone who
has designed their RAID system without considering the
perils of service, they would need to add at least one if
not two or more additional check drives to their RAID to
maintain the same expected system reliability in the face
of service hazards.
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Figure 6: PDL;5 for a model with imperfect repair for

a variety of M and p. Notice that for p = 0, this is the
simultaneous repair model.

6 Model 5: Sector Errors

Another major consideration in data reliability is the oc-
currence of irrecoverable read errors. In particular, if a
RAID system is rebuilding after M drive failures, and en-
counters an irrecoverable read error on one of the remain-
ing working disks, it will not be able to rebuild that byte
for the RAID system. As mentioned in Section[T] irrecov-
erable read errors occur once in every 10'# bits, and thus
are a common occurrence. Here, we will restrict our atten-
tion to the particular case of sector errors, and assume that
although sector errors are common it is unlikely that the
same sector will fail on two or more disks simultaneously.

We include the effects of sector errors on reliability by
considering a two-dimensional Markov chain where the
state ij signifies that i drives have failed, and j drives have
sector errors, and restrict our states to i+ j < M+ 1. There
is a special FAIL state which indicates that data has been
lost and corresponds to either M + 1 failed drives and no
working drives with sectors errors or M failed drives and
one or more working drives with a sector error. We denote
the case where i+ j = M + 1 as i j+ meaning that i drives
have failed and j or more drives have sector errors. As in
the simultaneous repair model of Sectiond] drives fail at
rate A, and are simultaneously repaired at rate y. In ad-
dition, clean drives will develop sector failures at rate A,
and we scrub the drives to remove the sector errors at rate
W'. This model was studied in [3], and the approach here
is similar but generalized to an arbitrary number of check
drives. Figure [/|depicts the Markov chain for the M =2
cases, and Table E] gives the transition rates between states
in the general case.

Similar to our previous methodology, we can consider
a vector q(t) that gives the probability of being in each



Figure 7: . Markov chain for a model of RAID reliability
that considers the effects of sector errors for the M = 2
case. In this model, state ij indicates i failed drives and j
working drives with sector errors.

| Transition | Rate | Condition
Conditions: i+ j<Mandi, j >0
1 (i7f)%(l+]7j) (T—i—j)ﬂ,
2| (i,4) = (0,)) u i>1
3 (,)—=GJ+1) (T—i—j)A
41 (i,j) = (i,0) Iy j=1
5 (iaj)*)(i+17j71) ]2’ ]21

Conditions: i+ j=M+1andi, j >0
6] (G)—(+Lj-D[T-Dr [j>1

Table 1: Table of transition rates for the sector failure
model. We write (i, j) instead of ij. Type 1 is failure
of a drive without sector error. Type 2 is replacement of
all failed drives. Type 3 is sector failure. Type 4 is re-
moval of all sector errors (scrubbing). Type 5 is failure of
a drive with a sector error. Type 6 is a failure of a drive
in the special case where i+ j = M 4+ 1. Since this case
indicates that j or more drives have sector errors, the fail-
ure of any drive regardless of whether that drive has sector
errors moves the system to the state (i+ 1, — 1).

state of our Markov chain as a function of time. Since
we have been considering states indexed by two numbers,
it is necessary to relabel our states in some one dimen-
sional manner, but the convention by which we do this is
unimportant. We can then use the transition rates given in
Table[I]to write a transition matrix. Even for small M, this
matrix is too large to include here. One can then calculate
q(t) using . For numerical calculations, we assume a
sector failure rate of A’ = 1/(2 days) and a scrub rate of
u' = 1/(6 hours), except where otherwise noted. This
scrub rate is unrealistically high; we will find that it does
not matter.

0 M=2,u=0 I
M =2, u' = 1/hour
—M=3,p=0
107 ==:M=3, = L/hour H
N ——M=4,pu=0
ol ==:M=4, ' = 1/hour
07, 10 20 30 40 50 60 70 80 90 100

Figure 8: PDLs for a model with sector errors. This graph
compares no scrubbing to scrubbing once an hour for M =
2.3, and 4.

Figure [§] shows the PDLs for this model as a function
of N for various M and p’. Notice that for a fixed u’,
this graph is qualitatively similar to Figure {4 the graph
of PDL;5 for the individual repair model. However this
graph shows that the consideration of sector errors yields
an estimate of PDLs that is several orders of magnitude
higher than the model proposed in Section

[S] discusses extensively the benefits of shorter scrub-
bing intervals (increased p’), finding that more frequent
scrubbing can substantially increase the MTTDL of the
system and thus make it more reliable. We find that scrub-
bing more frequently can indeed increase the reliability
of the system, but the effect is much less dramatic than
adding another check drive. Indeed, for the sector failure
rate used, it was necessary to increase the scrub rate to
once and hour to produce a discernible effect on the graph
in Figure[§]

6.1 Sector Errors and Imperfect Repair

We can update our model of sector failures to also capture
the effect of imperfect repair discussed in Section [3] sim-



| Transition | Rate | Cond.
Conditions: i+j<Mandi, j >0
la | (0,j) = (1,)) (T - )2 J<M
b | (i,)) = (i+1,)) (T —i— A+ |ixl
T—i—j
7 HD
2 | (i,j) = (0,)) p(1—p) i1
3| (i) = G, j+1) (T—i=jA
4 (i,j) — (i,0) u Jj=1
Sa | (0,)) = (1,j—1) | jA jz1
Sbo| (i) = (i+1,j—1) | jA+7up jz1
Conditions: i+ j=M-+1andi, j >0
6a | (O,M+1)— (I,M) | TA
6b | (i,j) = (i+1,j—1) | (T—i)A+up jz1

Table 2: Table of transition rates for the sector failure
model with imperfect repair. As compared to Table [T}
there are a few differences. Types 1, 5 and 6 of of Table
split into two types, la-b, 5a-b and 6a-b respectively, in
order to account for imperfect repair. The second terms of
cases 1b and 5b represent the impact of imperfect repair
which does not effect transitions from states where i = 0;
the fractions (T —i— j)/(T —i) and j/(T —i) represent an
erroneous repair of a functional drive without/with sector
errors, respectively.

ply by altering the transition rates of the Markov model
proposed in this section. Table[2]shows the transition rates
for the sector errors and imperfect repair model. Figure[9]
shows the PDLs for this model with p = 0.05. Notice
that the reliability estimates under this model are up to
6 orders of magnitude worse than for the model of sec-
tor errors without considering imperfect repair, and up to
14 orders of magnitude worse than the model without ei-
ther sector failures or imperfect repair, for the values of M
shown.

7 Delay of Service

We have just seen the hazards of service to the reliability
of the system, so perhaps a way to mitigate these haz-
ards is to plan to service the RAID system less frequently.
Section 2] took this idea to the extreme, where we consid-
ered a system in which there is no service to hard drives.
Here we will consider a system where service happens,
but might be delayed. This could correspond to a situa-
tion where the RAID system is only serviced on week-
ends when their are fewer users and thus it might be more
convenient for the system to be tied up in rebuild.

So far, we have modeled the time to repair as an expo-
nentially distributed random repair rate 4 = 1/(6 hours).
For a simple model of delayed repair, we will consider the
effects on reliability of decreasing the rate of repair in the
model proposed in Section [6.1]that considers sector errors
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Figure 9: PDLs for a model with with sector errors and
imperfect repair with p = 0.05.

and imperfect repair.
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Figure 10: PDLs for a model with with sector errors and
imperfect repair. This figure compares a mean time to
repair of three hours to 1 week for M = 3,4,5.

Figure [0 compares the reliability of a RAID system
that has a mean time to repair of 3 hours (the base model)
to one with a mean time to repair of 1 week (delayed
service) for M = 3,4,5. The delay of service has a dra-
matic impact on the reliability of the system, particularly
for large N. If one intended to run a RAID system with
delayed service, one would need to add one, two, or per-
haps more additional check drives to compensate for the
reduced reliability.



8 Model 6: Delay Systems

So far, we have modeled the time to repair and rebuild
broken drives as a single, exponentially distributed ran-
dom variable with rate 1. One can capture more nuance
of the repair mechanism by modeling part of this process
as a fixed time event requiring time % to complete. This
might capture the significant fixed time required to repair
and rebuild a RAID system, whereas the initiation of such
service might happen at a rate . We call this fixed time
event a delay. For modern RAID systems, due to the size
and the number of drives, repair constitutes a significant
portion of the system’s usable life and thus delays may
substantially impact our reliability model.

The mathematics of delay systems is substantially more
complex than the models previously discussed. To estab-
lish the theory, we begin with a toy example of a delay
differential equation (DDE):

dy _

2 =ay(t)+bH({—1)y(t—1),

0 <t <oo,
where H(t) = [*_ 8(t')dt’ is the Heaviside step function.
Let §(s) = [, e *'y(t) dt be the Laplace transform of y(r).
Using the usual calculus of Laplace transforms (i.e. in-
tegration by parts for derivatives and change of variables
for shifted arguments), we obtain s$(s) —y(0) = a¥(s) +
be*$(s). Thus, $(s) =y(0)/(s—a—Dbe™™). Let y(0) =1
be the initial condition. Using the inverse Laplace trans-
form (Mellin Inversion Formula) we get

1 O +ip

(1) = — lim _ eMds
M = mips= o ip s—a—bes

where o is chosen so that all poles of the integrand lie to
the left of the line Rs = o, and is arbitrary, otherwise.
The poles of the integrand, i.e. the roots of the equa-
tion s —a = be™%, are the characteristic numbers of the
problem. The roots of the equation se® = z define the
Lambert W function, which is a multi-valued function in
the complex domain. Our equation is (s —a)e® = b or
(s —a)e*™® = be . Hence, the characteristic numbers
are: s =a+W(be ). Provably, there are infinitely count-
ably many values of s. If the path of integration can be re-
placed with a large loop containing all characteristic num-

bers, and if all characteristic numbers are simple roots D

of the equation then, using the residue calculus, we find
the formal solution:

e esjt
1) = E _
¥(t) ps 1+be 5

where the summation is over all characteristic numbers
{s;}. The full mathematical analysis of a system with

! All roots are simple unless be D) = 1.

delay is subtle (such as convergence of the formal series
above) and will not be attempted here. It should be noted
that numerical integration of DDE’s does not present any
difficulty, and numerical results can be readily obtained.

To obtain a model of RAID reliability, we must study
systems of DDEs. Here, we will consider only the follow-
ing limited form:

< 4(t)=Bq(t) +CH(:— h)q(t — )

7 (10)

where 0 <7 < oo, B and C are n X n matrixes and q(r) is a
vector-valued function with n entries. We take the Laplace
transform and obtain:

2q(z) — q(0) = Bq(z) +exp(—zh) Cq(z)

where q(z) is the Laplace transform of q(7). Hence, the
Laplace transform of the solution is

d(z) = (zI =B —exp(—zh)C) ' q(0)

where R(z;B,C,h) = (zI — B —exp(—zh)C)~! is a com-
plex, matrix-valued, meromorphic function which re-
places the ordinary resolvent for a non-delay linear sys-
tem. We note that for » = 0 we have R(z;B,C,h) =
R(z;A) where A = B+ C (the right-hand side is the or-
dinary resolvent). The theory of moments of the solu-
tion discussed in Section [2.3] carries through to the delay
case, and in particular involves only the Laurent series of
R(z;B,C,h) at z = 0. The computation of the probabili-
ties, i.e. the vector q(7), presents similar theoretical diffi-
culties as the toy example in the previous section. Nu-
merical calculations are straightforward. An analytical
approach must deal with the poles of R(z;B,C,h), which
are the roots of the transcendental characteristic equation
det(zI —B—exp(—zh)C) =0.

8.1 Delay with One Check Drive

Now we will modify the individual repair model for
RAID 4/5 discussed in Section [3.1] to include delay. We
do so by assuming that disk repair takes no time (replace-
ment of the drive, reconstruction using data on functional
drives, etc.), but after that we simply wait 4 units of time
before adding the drive to the RAID. This is equivalent
to assuming that repair takes time £ but that drives cannot
fail during repair and reconstruction. This model is not re-
alistic and serves only as an illustration of our approach.
This model yields the system of differential equations:

Saolt) = —(V+ 1) Aao(0)+ RHG—R)ar (- R).(1D)
Cal) = (WEDA@0) - WA Ema0), ()
Sl = NAq). 13
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Figure 11: RAIDwithM =1,T=2,A=0.01 and u =
0.01 (both have units of inverse time); delayed repair of
h =300 time units. MTTDL is the area above the graph
of ¢(t) as 0 <t < oo. According to our calculations, this
area can be made arbitrarily large by increasing delay (4).

The delay term represents disks for which repair started
at time ¢ — h and are coming on-line at time ¢. This system
is of the form (T0), where

—(N+1)A 0 0 0 u|o
B=| (N+DA —NA-p |0 |, C=|0 0]0 |.
0 NA |0 0 0o

The first moment of the time of failure is:

ON+DA+u  wh

7)= (N>¥N)AZ NaA’

ml(
Clearly, when h = 0, we reproduce the result of Sec-
tion Unexpectedly, positive delay results in larger
m1 (7). By delaying the drive replacement we could in
principle increase the mean time to failure indefinitely.
This result is counterintuitive, and indicative of how unre-
alistic this model is. In simulations, the state vector q ex-
hibits oscillatory behavior, as shown in Figure [T} which
is typical when studying delay phenomena. The value of
PDL, = g2(¢) may also be obtained in principle via the
inverse Laplace transform, but due to the implicit depen-
dency on the roots of the characteristic equation, is not
very tractable analytically.

8.2 Delay with One Check Drive and Fail-
ure During Rebuild

To improve the model of the previous section, we explic-
itly track drive’s progress while it is rebuilding, and allow
it to fail during rebuild. The cost of this improvement
is increased mathematical complexity, as the model is a
PDE. Under the notation of the previous section, we as-
sume that after the drive is replaced, it requires 4 units of
time to restore the data, but now the drive may fail during
recovery. The RAID may be in three functional states: no
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drives failed, one drive failed and waiting to be replaced,
and one drive being reconstructed. In addition, there is
the fourth, implicit state: the failure state. The probability
distribution consists of three components:

1. go(t) - the probability that a RAID system has no
failed drives;

q1(t) - the probability that a RAID system has one
failed drive waiting to be replaced;

q2(t,x) - the probability density of RAID systems
with one drive being reconstructed; thus, the prob-
ability that a system is being reconstructed and the
reconstruction has lasted between x and x + Ax units
of time is g (¢,x) Ax. Thus, 0 < x < h.

The system of differential equations (a generalization of
Kolmogorov-Chapman equations) for this system is:

W0 _WenAe@ e, ()
M0 — (N 2g00) - VAW, (15)
209 (v gy - 220D e
a2(1,0) = uqi(r). (17)

This is a system of partial differential equations where the
last equation is a boundary condition. Most of the terms
are familiar, except for the following terms:

1. g2(t,h) in equation (14)), which is a contribution from

the drives for which reconstruction ended;

aq"é( 9 in equation (16) which is due to the RAID
reconstruction progress;

Equation (I'7) accounts for replacing failed drives,
for which reconstruction begins immediately.

Starting with all RAID systems with no failed drives and
no drives being reconstructed, we arrive at the following
initial conditions: ¢o(0) =1, ¢1(0) =0, ¢2(0,x) = 0 for
0 <x < h. It is possible to obtain the MTTDL for this
system by the methods previously introduced. The system
is solved by considering the Laplace transform in the time
domain:

240(z) —q0(0) = —(N+1)A4o(z) +42(z,h),
201()=q1(0) = (N+1)A4o(z) = (NA +1) 4 (2),
2ple) ~2(0) = 4NHM@@@—@§22
P(z,0) = uaqi(2).

The strategy to solve the system is obvious: first we solve
the third equation as an ODE:

= ¢ (NHDA+ax g, (z 0)

+/e ((N+1)A
0

qAZ(va)
g (0,x — ) du.



For given initial conditions, this reduces to §»(z,x) =
pe (N4DA+2x4, (7). Next, we substitute this result into
the first equation and solve the resulting algebraic lin-
ear system. If q(z) = (qo(z),q1(z)) then the solution
for given initial conditions may be represented as q(z) =
(zI —A(z)) " 'ep, where ey = (1,0) and

—(N—i—l)l ‘ue—((N—H)}H—z)h
Alz) = |
@@= w2 —WA+p) (18)
We have
h
| —PDL, = P(T >1) :qo(z)+q1(t)+/0 >(t,%) dx.

The Laplace transform is §o(z) + 41 (z) + foh §2(z,x)dx, or
explicitly:

q0(Z)+ql(Z)+ U <1 _ef((N+l)7L+Z)h> qu(2)~

(NT1)A+z

The 0-th coefficient of the Taylor expansion with respect
to z yields:

2N+1)A+ (27 e—<N+1Wl) u
(N24N) 22+ (1—eWHDARY (N + 1) A

QN+ A+u  (UN+p)A+p?)h .
(N>+N) A2 N2A2

MTTDL =

Again, for h = 0 we reproduce the result of Section
One can check that MTT DL is monotonically decreasing
function of 4 for all 4 > 0. The limit as & — oo is:

QN+1)A+2u
(N+1)A (NA+p)

As in the previous examples, obtaining explicit solutions
for PDL; presents a challenge, as it depends on the abil-
ity to solve a transcendental equation akin to the Lambert
equation.

We should note that the delay system (TT)-(T3) studied
in the previous section may be formally obtained from the
system (14)-(17) by dropping the term — (N + 1)A¢> () in
equation (T6).

The technique introduced here is flexible enough to
handle very sophisticated RAID models, for instance,
M > 1 and the infamous “bathtub curve” (non-uniform
failure rate of a drive, depending on its age). However,
presenting these results is beyond the scope of this paper.

9 Silent Data Corruption

Occasionally, data is corrupted on the disk in a way that
is not detectable by hardware. This incorrect data is then
read and delivered to the user as though it were correct.
An advantage of Reed-Solomon codes is their ability to

detect and correct such errors. Reed-Solomon codes are
an example of maximum distance separable codes, about
which there are well known results in there area of coding
theory. See [[13[], for example.

RAID systems group bytes on the drives into words,
and words in the same position on each data drive are
combined to form the word in that position on the check
drive. A RAID system with M check drives and all drives
working can detect up to M (and sometimes more) corrupt
words in any position. Such RAID systems can correct %
corrupt words in a any position.

Given that silent data corruption occurs relatively infre-
quently (see [4] for a discussion of many types of errors),
it is sufficient to design RAID systems that are able to
detect and correct a single error at a time. This requires
N + 2 drives to be operational at any time. If we think of
PDL,; as a function of N and M for one of the models pre-
viously discussed, then a system with N data drives and
M check drives has a probability of entering a state where
it cannot check for and correct silent data corruption of
PDL, (N +2,M — 2) under that model. Put differently, if
you have designed a RAID system that meets your reli-
ability needs without considering silent data corruption,
then the addition of two check drives allows you to check
for and correct silent data corruption with similar reliabil-

ity.

10 Conclusions

Given 100 drives, how do we design a RAID system to
give the best reliability with the highest data rate (percent
of drives used to store data)? We have studied the follow-
ing possible designs:

Double Mirroring Each drive is mirrored twice. This yields a
data rate of 33/99.

Two Independent RAID 6 Divide the 100 drives into two in-
dependent 50 drive RAID 6 systems (N =48, M =2). If
each RAID system has a PDL5 of ¢, then the PDL; for the
two systems together is PDL, = 1 — (1 —¢).

Layered RAID 6 Divide 100 drives into 10 RAID 6 groups.
Let the 10 groups act together as a RAID 6. Let m be the
MTTDL for each ten drive group. Then we can model
PDL; for the system by setting A = 1/m. Note: for the
sector failure model, we only model sector failures at the
first level, not the second.

Large RAID A single large RAID system with M =4 or 11,
and N =100 — M.

Clearly, the single large RAID system is superior to other
designs considered.
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PDLs
Data| Simultaneous| Imperfect Sector Fail-
Rate| Repair Repair ures & Im-
perfect Re-
pair
Double mir- | 35 [ 4.64-1077 [ 1.17-1071 [ 4.61-107]
roring
Two in- | & [546-107% [ 1.13-107" [ 9.26-107"
dependent
RAID 6
Layered B 6.47-107% [ 3.19-107% | 4.85-1073
RAID 6
Single Large | 2o | 9.61-107% [ 1.98-10% | 8.78.1073
100
RAID (M =
4)
Single Large | 5% [ 3.62-107% [ 8.55-1071% | 1.52-107 "
RAID (M =
11)

Table 3: Comparison of PDLs for several RAID designs.
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